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1 INTRODUCTION 

1.1 Power System Security 

The main concern of electric utilities is to supply the customers with inexpen­

sive electricity at admissible voltage and frequency without interruption of service. 

To achieve this goal, it is vital to maintain the security of the bulk power system. 

The security of power system is the state of the system which ensures the 

integrity of power system for a set of disturbances such as faults and outages of power 

system component. At present large portions of the North-American interconnected 

power system are being operated at power transfer levels in excess of anticipated 

design goals in order to obtain economic benefits from firm energy transactions. 

There are indications that this trend will continue due to limited availability of 

new transmission right-of-ways. This mode of operation requires more elaborate 

and sophisticated operations planning, due to the unavailability of ample security 

margin. 

Power system security is important to planners as well as to operators. For 

planners, security is an aspect of reliability, because the planner is responsible for 

designing a system that will be reliable over a long period of time. 

On the other hand, the operator is responsible for maintaining the the actual 

functioning of the real system that is changing as well as is being subject to chang­
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ing demands and changing disturbances from the environment. So security is an 

instantaneous, time dependent measure of the robustness of the system with respect 

to imminent disturbances and available reserve actions [1,2]. 

1.2 Tools for Security Assessment 

Usually security assessment is categorized into either static security assessment 

or dynamic security assessment. For a stability limited power system, dynamic 

security assessment ensures that the system remains in synchronism in the transition 

to an acceptable operating state for a predetermined set of disturbances. Static 

security ensures that the line flows do not exceed the thermal rating for their lines 

and bus voltages remain within acceptable ranges. 

Though the predetermined line loading limits and stability loading limits from 

off-line studies can guide the operator in general situations, these are not sufficient 

for security assessment under ever-changing system operating condition and envi­

ronment when the system is stability limited. As a consequence several off-line tools 

have been modified and used as tools for on-line situations. Optimal power flow 

and static security assessment program are examples. 

Traditionally the time domain simulation using digital computers is accepted 

as a practical method of large disturbance stability analysis for off-line dynamic 

security assessment. This method is robust and reliable but it is computationally 

intensive and time consuming. Also the transient stability programs currently in 

use do not fully exploit the information available from the results of time-domain 

simulations due to extensive demand for skilled manpower for output analysis, as a 

result they are not suited for on-line analysis. 
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It is very difficult to obtain sensitivity information from the output of a conven­

tional time domain study with regard to critical system parameters and quantities, 

since the time domain solution is conducted based on a specific scenario. If the 

network parameters or operating conditions are changed, the analysis has to be 

repeated. 

In a typical operations environment, the system operator needs to défine stabil­

ity limits and evaluate margins to signal the approach of vulnerable situations under 

ever-changing conditions. In addition there is also need to recognize approaching 

vulnerability and take appropriate preventive action. 

Modern energy control centers presently include application software for static 

security assessment with respect to contingencies involving steady state operation 

following a disturbance. This assumes that the system has survived the transition 

during the contingency. This assumption was made in the past mainly due to lack 

of tools to assess transient stability in an on-line situation. 

In contrast to the time domain approach the direct methods determine the 

stability of the power system without explicitly solving the differential equations 

describing the dynamics of the system. Moreover, they provide a qualitative mea­

sure of the degree of stability which can be analyzed as a function of important 

system parameters such as generation shifts among generators, power flows in crit­

ical lines and changes in the load. 

Because of the above mentioned merits, direct methods are appealing and have 

been the subject of research efforts since the early work of A.A.Gorev [3] in the 

1930's. 



www.manaraa.com

4 

1.3 Direct Methods 

1.3.1 Origin of the direct methods 

All direct methods of stability assessment are directly or indirectly related to 

Lyapunov's direct method and Hamiltonian Mechanics. The main idea of Lya-

punov's direct method is that " if the system dynamics are such that the energy 

of the system is non-increasing with time and does not exceed a certain threshold 

value" this gives sufficient condition for the stability of the equilibrium point. The 

theorem of Lyapunov put this idea into mathematically precise terms. 

The well known equal area criterion [4] which is a direct method for a two 

machine system, explains the energy conversion process during transients. For a 

two machine system, it is very easy to formulate a Lyapunov function which is the 

sum of potential energy and kinetic energy and is the Hamiltonian. 

But difficulty arises when we apply direct methods to multi-machine power 

systems. During the early stages of research the following reasons have prevented 

energy type direct methods from being applied to multi-machine power system 

stability assessment. 

Firstly, kinetic energy of generator rotors is dependent on the coordinates cho­

sen. Proper choice of the coordinate is vital in identifying the kinetic energy which 

is converted into potential energy when the disturbed machines are climbing up the 

potential barrier during the system separation process. 

Secondly, the potential energy profile, created by the machine angle deviation 

from the post-disturbance stable equilibrium point, is disturbance dependent. In 

other words the potential energy profile is a function of the trajectories of the 
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machine angles which we do not want to compute in direct method to assess stability. 

Thus, in order to compute the potential energy, we have to identify the trajectories 

of the critical machines without solving dynamic equations. 

Thirdly, when the number of generators increases, the numerical burden in­

creases rapidly. 

In the 1930's Gorev [3] used the first integral of energy to obtain a criterion 

for stability. But there was no further accomplishment after that. The first major 

work on the subject in English was by Magnusson in 1947 [5]. In these early works, 

the power system was considered as a conservative system where the total energy 

in the system is conserved. 

In 1958, Aylett proposed an energy-integral criterion to obtain the transient 

stability limit [6]. The most significant aspect of Aylett's work is the formulation 

of the system equations based on the inter-machine movements. This is in accord 

with the the physical dynamic behavior of the machines which determines whether 

synchronism is maintained. But it was too difficult to apply this method to multi-

machine power systems, because of the enormous numerical burden involved in 

determining the particular singular point from the — 1) singular points, which 

theoretically exist for a n-machine system. 

1.3.2 Progress and improvement of direct method 

In 1966, El-Abiad and Nagappan [7] proposed a procedure of assessing the 

transient stability region of a multi-machine power system. In their approach the 

transfer conductances of the power system were included in formulating the Lya-

punov function. They manipulated the energy terms corresponding to transfer 
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conductances to be integrable analytically. Incorporation of transfer conductances 

requires computing path-dependent integrals which can not be computed without 

knowing the trajectories. 

It is interesting to note that the authors argiie that their integral function is 

a Lyapunov function even though it is not (It is indefinite in the neighborhood of 

the stable equilibrium point.). But this mathematical contradiction does not pose a 

severe problem, because we assume that the point under consideration is the stable 

equilibrium point and our main concern is to obtain the largest region of attraction. 

The procedure in this work to assess the stability is still used in the transient energy 

function method. 

Many researchers in the 1970's have neglected transfer conductances on the 

basis that these are small. But this assumption was not good, since the constant 

impedance loads are reflected in the transfer conductance terms of the network 

matrix. Uemura et al. [8] suggested a linear trajectory approximation, which is 

currently used in practice. The authors concluded that if a given multi-machine 

system swings like a two-machine system, then the energy function obtained by the 

linear trajectory approximation method will yield an approximately good result. 

Tavora and Smith [9] developed the concept of the center of inertia (COI). 

This work vastly improved the formulation of the stability problem, and resulted in 

neglecting the portion of energy involved in accelerating the COI, contributing to 

stability. These properties were also identified in [10]. 

In 1976, Gupta and El-Abiad [11] made an important contribution in identi­

fying the fault-trajectory dependent unstable equilibrium point (UEP). Until then 

the critical energy was calculated at the UEP having the lowest energy level. 
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In 1979, Athay and co-workers at System Control, Inc. (SCI) [12] made signif­

icant progress toward the development of transient energy function (TEF) method 

for application in transient stability analysis. These accomplishments are summa­

rized below. 

1. Their works showed that the relevant UEP was determined mainly by fault-

trajectory. The most weakly connected generators may not lose synchronism. 

2. The concept of Potential Energy Boundary Surface(PEBS), developed by 

Kakimoto and co-workers [13] , was utilized to understand system separa­

tion mechanism and to determine the fault-trajectory dependent UEP. 

3. The development of a formalism for the Transient Energy Stability Analysis 

(TESA) approach which was based of a Lyapunov theory that involves the 

concepts of invariant sets. 

In the early 1980s Fouad and coworkers at Iowa State University [14,15,16] 

made several contributions to this area of research. The following is a summary of 

the main accomplishments of their work 

1. The concept of controlling (or relevant) UEP is valid. 

2. The critical trajectory of the critical generators is controlled by the controlling 

UEP. 

3. Instability is determined by the gross motion of the critical generators. 

^This technique is called TEF method in the Hterature ever since 
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4. A significant portion of the kinetic energy which does not contribute to the 

system separation is identified. By correcting the kinetic energy the stability 

assessment becomes less conservative. 

5. For practical purposes, the critical energy is equal to the energy level at the 

controlling UEP. 

6. The energy margin is an indicator of the robustness of the power system. It 

allows the ranking of contingent disturbances for a given operating condition. 

Further investigation followed in order to identify the complex mode of distur­

bance, because observance of the fault trajectory shows that not all the severely 

disturbed machines lose synchronism. Fouad et al. [17] developed a reliable and 

fast technique to determine the controlling UEP by identifying the weakest link. 

This procedure significantly improved the prospect of the transient energy function 

method. 

As a result of these various advances, the conservativeness of the TEF method 

has been significantly reduced. 

1.3.3 Application of the transient energy function method 

The next phase of the research efforts consists of two aspects: 

• 0 New application of the TEF method 

• Incorporation of new models in .the TEF method. 
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Associated with both there were other issues, e.g., computational problems. The 

achievements of these research works are: 

1. Determination of generation shedding requirement using the TEF method 

[18]. 

2. Dynamic security assessment by determining critical interface power flow lim­

its [19]. 

3. The application of the TEF method to large scale-scale power systems [20]. 

4. Incorporating out-of-step impedance relay in the TEF method [21]. 

5. Incorporating the effect of the exciter in the TEF method [22]. 

6. Incorporating the two-terminal HVDC lines in the TEF method [23]. 

7. Incorporating the non-linear load in the TEF method[20]. 

Current research efforts are concentrated on the sensitivity analysis of the TEF 

method and the application of the TEF method to stressed power system. 

1.4 Statement of the Problem 

1.4.1 Motivation of the study 

In system operation, static security assessment is usually carried out by on-line 

simulation of critical contingencies to ensure that bus voltage limits and thermal 

limits will not be exceeded. On the other hand, overall dynamic security assessment 

is not presently computed on-line. Fast and very reliable techniques are essential for 



www.manaraa.com

10 

on-line dynamic security assessment in order to determine, in real time, the stable 

regimes and conditions under ever changing system dispatch as well as scheduled 

or forced equipment outages in the system. In stability limited networks, several 

hundred contingencies have to be assessed within seconds for variation in dispatch 

and power flows, to determine secure regimes of operation. 

Given these safe limits the system operator would take the necessary actions 

in order to remain within the normal state and thus act to prevent stability crises. 

For example, if a storm approaches a certain area , the system operator can shift 

generation between critical and non-critical machine groups in order to remain 

within the boundary of the safe operating region. 

Due to continued development and enhancement, the TEF method now pro­

vides accurate and reliable stability assessment. For the TEF method to be an 

effective tool for dynamic security assessment, an important step is to relate the en­

ergy margin and relevant system variables, such as generation change, load change 

and interface power flow change. With these sensitivity information a system oper­

ator can fully exploit the result of stability assessment and develop a constructive 

knowledge for operating his system safely. 

1.4.2 Scope of the work 

In this research work a procedure to determine transient stability limits for 

particular contingency using analytic sensitivity of the energy margin is developed. 

The objectives of this research work are as follows. 

1. Development of a dynamic sensitivity model to obtain sensitivity of the energy 

margin with respect to generation shifts. 
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2. Apply the proposed technique to determine critical generator loadings and 

critical transmission interface power flow limits. 

3. Conduct simulation studies to test and validate the procedure developed on 

realistic power systems. 
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2 THE TRANSIENT ENERGY FUNCTION METHOD 

FORMULATION 

2.1 The Transient Energy Function Formulation 

2.1.1 The classical power system model 

The classical model of power system usually used in transient stability studies 

is reasonably accurate for first swing stability analysis. This model is the simplest 

model used in power system dynamics, and requires a minimum amount of data. 

The following assumptions are made for classical model of power systems [24]. 

1. Mechanical power input to each generator is held constant. 

2. Damping or asynchronous power is negligible. 

3. The synchronous machines are modeled as constant voltage sources behind 

the transient reactance. 

4. The motion of machine rotor angle coincides with the angle of the voltage 

behind the transient reactance. 

5. Loads can be represented by passive impedances. 

In addition to these five assumptions electrical transients in transmission network 

including machine stator circuit are usually neglected assuming its time constant is 
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very small. Using the above model, the dynamic equations of an n-machine system 

during the transient period are given by 

= Pi -  Pei 

i  — ^ — 1 ) 2) 3^..TiJ (2.1) 

where 

Pei = S - Sj) + D^j cos(f^ - 6^)] 

Pi = Pmi-^i^ii (2-2) 

and 

% = ^i^j^ij^ 

Dij = EiEjGij,  

; the mechanical power input to generator i ,  

Ej^ ; the internal voltage of machine i ,  

; the inertia constant of machine i ,  

8 ^  ; the electrical angle of machine i  with respect to a synchronously rotating 

reference frame, 

wj ; the electrical angular speed of machine i  with respect to a synchronously 

rotating reference frame, 

; the real and imaginary components of the i j  —  t h  element of the 

reduced admittance matrix. 



www.manaraa.com

14 

The network admittance matrix used here has been reduced to the internal 

generator nodes. Also all variables are in per unit. 

2.1.2 The center of inertia reference frame 

Major breakthrough in the TEF development, was achieved using the center of 

inertia(COI) transformation [9,10]. The position of the center of inertia is defined 

by 

COJ = So = ^ E MiSi, (2.3) 
i=:l  

where 

= E -̂ r 
z=l 

Then the motion of the center of inertia is determined by 

MJ^ÙQ = PQQI 

where 

(2.4) 

^COI = Pei)'  
i=l 

Sq = U)Q 

By adopting the position of center of inertia as the reference frame, we have 

^0, 

Qi = = (2.5) 
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then the equations of motion of the generators in the COI reference frame become 

Miii = P; _ P,. - ̂ PcO/. 

, i = 1,2,3, (2.6) 

By definition the COI coordinates, 0^ and are not linearly independent and 

satisfy the following important relationship. 

S = 0, 
i = l  

= 0. (2.7) 
i=l 

By adopting COI coordinates, only the kinetic energy related to the asyn­

chronous motion of the rotors from the collective motion of fictitious inertia center, 

is identified as kinetic energy responsible for system separation. 

The equilibrium points of the dynamic equation(2.6) are the points which sat­

isfy the following condition. 

-  ̂ ei --^PCOI = 0 

= 0 , i = l,2,...,n (2.8) 

Notice that from equation(2.8) equilibrium can be reached with P(JQJ having 

non-zero value. This means that position of the center of inertia can accelerate 

while the generators remain in synchronism. 
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2.1.3 Transient energy function 

From equation(2.6), system transient energy of the post-disturbance network 

can be obtained. The post-disturbance swing equation of machine i is multiplied 

by and summed up for the n machines in the system: 

Ê  [ M A  - P i +  P e i  +  ̂ P c o A  ( 2 - 9 )  
z=l 

The above expression is integrated with respect to time, using as a lower limit 

t = ts , where Q.{ts) = 0 and d{tg) = , then the transient energy function V 

takes the following form. 

y  = l ' E M i n f - ' E P i i e i - e l ) -
1 = 1  i = l  

n-l  n 
Z Z [^-Icos - cos e f j )  - J  D i j  cos 6 i j d { e i  4- 0j)](2.1O) 
i  =  l  j = i  +  l  Q S , 0 S  

I J 

where 

6^ = stable equilibrium point of post-disturbance network, 

% = 

Physically the first term of equation(2.9) is the sum of rotor kinetic energy of 

the generators. The other terms constitute the potential energy. 

Since the last term in equation(2.10) consists of a path dependent integral 

which can be evaluated if the system trajectory is known, approximation of the 
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system trajectory is required to calculate this term. By using a linear trajectory 

approximation [8] equation(2.9) becomes 

V  =  I E  -  E  -  « i  )  -
"^1=1 i=l 

Z E e^j - cos efj) - i^j] (2.11) 
i — l  

where 

^7 ~ ~ ^7 

IJ i j  
an approximation of the transfer conductance terms (Gjj) (2.12) 

2.2 Stability Assessment by the TEF Method 

2.2.1 Critical energy and the energy margin 

The transient energy can be evaluated between any two points along the system 

trajectory. For example, for a faulted system at the instant of clearing, = 

the transient energy with respect to post-disturbance stable equilibrium 

point 0"® is given by 

= y| jc/ 
9^ 

1 A 
= Ô S 

i = i  
) - Z fXf - ) 

i = l  
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Z Z ICi;(cos«Çj-cos«|^)-/rfl (2.13) 
i=lj—i+1 

where 

gçl + ô^J -  9f -  @4 ,  

Jl  J (2-") 
i j  i j  

The critical transient energy is defined as transient energy level at controlling 

unstable equilibrium point with w = 0. 

Vcr = Vu = V\^ 

= E l C i j { c o s e v . - c o s e f j ) - i f - ] { 2 . u )  
2 = 1 z = l j=i + l  

where 

gy + _ ga _ gg 
4^ ~ ^ij _ 03. ) (2.16) 

U U 

The system transient energy margin AVis obtained from the difference of these 

two values. 

AF = Vcr - V^i (2.17) 

Substituting for V^i and Vcr in equation (2.13), we can show that transient 

energy margin can be approximated as 
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^2=1 i=l 

JL ; ûU 
- .E E [C^j(cosg%. - cosg|^.) - 7-^1-(2.18) 

2=1j=i+l -

where 

f l u  O f +  9 ' ^ -  e f  -  e f  , 
^  I f  ' ('-% - (2.19) 

Notice that equation (2.18) involves less interval of approximation than equa-

tion(2.13), (2.15) and (2.17). In equation (2.18) the trajectory is approximated 

from the fault clearing point to the controlling UEP. 

2.2.2 The kinetic energy correction 

After a major disturbance, a power system tends to split into two groups of 

machines. In such a condition not all kinetic energy at the instant of fault clearing 

contributes to the separation of the critical machines from the the rest of the system. 

The transient kinetic energy which is responsible for the separation of the critical 

group from the rest of the system is identified as the kinetic energy associated with 

the gross motion of the critical group with respect to inertial center of the rest of the 

system. The remaining portion of the kinetic energy is not converted to the other 
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form of energy for stability to be maintained. It is identified as the inter-machine 

motion kinetic energy in each of the group. To account for this fact, the kinetic 

energy is corrected as follows [14,16] 

~ (2.20) 

where 

_ McrMsys 

~ Mcr + Msys '  

<^eq — (iicr ~ ^syst 

and 

Mcr = ^ 
iç.cr 

Msys = 
i£sys 

cr ; index set of critical generators, 

sys ; index set of non-critical generators 

<^cr = ( Miû^)/Mcr, 
iÇ.cr 

^sya = ( X] Mi(b^)lMsys-
lEsys 

Then the original kinetic energy term should be replaced with . There­

fore, the energy margin becomes 
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AV = -lMeqO>1g - t, Pi(ef - ff) 
i  =  l  

- E E  -  c o s g ^ )  -  ( 2 . 2 1 )  
1 = 1  J  = 1 + 1  -

2.2.3 Stability assessment by the TEF method 

In the TEF method the energy margin plays a major role in assessing the 

power system stability for a particular disturbance. To accurately compute the en­

ergy margin, identifying the correct controlling UEP is essential. Theoretically the 

controlling UEP is the point which the critically cleared system trajectory reaches 

with zero speed for a particular disturbance. The determination of the "Mode of 

Disturbance" identifies this pont [17]. 

Based on the sign of the energy margin, the stability of the power system is 

easily assessed. If the energy margin is positive, the system is stable; otherwise it 

is unstable. In the following chapters, the change of energy margin is related to 

generation changes or transmission interface power flow changes assuming that the 

total generation is held constant. 
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3 SENSITIVITY OF THE ENERGY MARGIN WITH RESPECT 

TO GENERATION SHIFTS 

3.1 Introduction 

An inherent advantage of the TEF method is the availability of the energy 

margin which can be analyzed as a function of relevant system variables such as, 

generation shifts among generators and power flow in key tie-lines. 

From the early stage of the TEF method development this aspects was recog­

nized [16]. In that approach additional disturbance as a form of generation increase 

was introduced to consume the transient energy margin to assess the relative sever­

ity of the impact of additional disturbance. Various research efforts followed after 

this pioneering work. 

Sauer et al. [25] used numerical sensitivity of the energy margin with respect 

to total system load to derive a stability-limited load supply capability which was 

incorporated as a constraint in the optimal power flow problem. 

El-Kady et al. [26] developed a transient energy margin sensitivity technique 

combined with power flow distribution factors for fast computation of transmission 

interface power flow limits by using numeric sensitivity coefficients. 

In [27], Vittal et al. assuming linear behavior of the energy margin with respect 

to generation shifts, developed a technique to determine critical plant loading limits 
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when increased loading is desired for economy, or decreased loading is desired to 

maintain stability. 

Recently Pai et al. [28] proposed an analytic method for determining a maxi­

mum load capability of simultaneous interchange capability of the system assuming 

a certain contingency. Several simplifying assumptions were made ; 

• Transfer conductances were neglected. 

• Only self clearing faults "with no line switching were assumed. 

This method successfully related energy margin and maximum load supply 

capacity. This technique used dynamic sensitivity equations to obtain sensitivity 

information about the clearing angles and the clearing speeds. 

In power system operation under stability-limited condition, the preventive 

action, generally consists of generation shifts among generators, load shedding or 

generation rejection. In this chapter sensitivity of the energy margin with respect 

to generation shifts is obtained by developing the dynamic sensitivity equations 

[29,30]. Generation shifts result in a new power flow solution,i.e., new equilibrium 

points. The difference of these two power flow solutions serves as an initial condition 

variation in the dynamic system [30]. 

In the analytic sensitivity study, infinitesimal variation is assumed. Therefore 

direct application of the estimate for infinitesimal variation to the case of small 

variations, makes it possible to obtain approximate results with a certain degree of 

accuracy. The issue of accuracy will be treated in a later chapter. 
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3.2 Theory and Description of the Sensitivity Analysis 

In the TEF method the energy margin AV is given by equation(2.9), and is 

rewritten here for convenience. 

A K  =  E P i C » ? - e M:  C i j ( c o s e f ^ - c o s e f - )  
2 = 1  i = l  j — i + 1  

n — 1  n  Q V -  —  Q Ç ^  —  

4-4j 
where 

% = 

D i j  = \ E i \ \ E j \ G i j  

Pj^ ; the net mechanical input power at i-th machine terminal 

; the mechanical input power at i-th machine terminal 

Gij ; the real part of ij element of internal node reduced post-disturbance 

admittance matrix 

; the imaginary part of ij element of internal node reduced post-fault 

admittance matrix. 

; the internal constant voltage source behind transient reactance of machine i 

Ml ; the inertia constant of machine i 

6^^ ; the clearing angle of the i-th machine rotor in COI reference frame 

6^ ; the controlling UEP angle of the i-th machine rotor in COI reference frame 

6^4 = Qcl - QcJ-

eV'. = eV' -
U  t  3  
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"" ̂ 'sys 

Mcr = Mi 
lEcr  

' "PF^iE 
My = J] 

i = l 
; the clearing speed of the i-th machine rotor in COI reference frame 

cr ; index set of critical generators 

ays ; index set of non-critical generators 

In general A V  = A V { P Y n , $ y ' , 6 ^ ^ , 0 ^ \ E , B j ^ j , G , i j ) .  When the generation is 

shifted among generators, the clearing speeds, clearing angles, unstable equilibrium 

point and the constant voltages behind transient reactance E,i (which is assumed 

constant during the transient) will change. In reality the reduced admittance matrix 

terms and G{j will also change as the load bus voltages change in the pre-

disturbance power flow solution, and the admittance corresponding to the load 

changes. However, it is assumed that these changes are small and neglected. These 

changes will cause the energy margin to vary. If we assume the following ; 

1. Total generation is constant 

6=1 

where 

N - 1  

L _ 1  

^Pmk i variation of mechanical power input at k-th machine 
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APmN i variation of mechanical power input at reference machine(usually 

has the largest inertia). 

N  ; the number of generators at which generation is adjusted. 

2. Generation shifts do not alter the mode of disturbance. 

3. Generation shifts is not large. 

The variation of energy margin A(AF) caused from generation changes can 

then be approximated as [27,31] 

« Z (3-2) 
6=1 rnk 

The sensitivity of the energy margin to change in generation change at the k-th 

machine is given by the partial derivative of AF with respect to P^j^. Differenti­

ating equation (3.1) using the chain rule of differentiation, we get 

Q P  I  -  -MegWggùgg - { e l  -  e ' j ^ )  -  Y ,  { P m i  " " '"ii) 
z=l 

+  E  Z  % % i ' ^ i k  ~ ^ j k ^ ~  ^ f j ( ^ i k  ~  ' ^ f k ) ]  
i = l j — i + 1  

I — 1  J — î - f - l  \  i j  i j )  

+4)(«r+- «f -
(«V. - «rf)2 
^  I J  l j >  
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n—1 n (QV' -{• 

- c o s 6 f j ( u f l - u f f , ) j  

i=l ^^mk 

T i — 1  n  a i  F i ,  I  d \ E ' \  

i = l  j = i + l  "  m k  ^ m k  

{ s i n O f - - s i n d f j ) ]  (3.3) 

where 

= ^i-,h - Ky,,k 

"c,*! = E 
t E c r  

"i',!' = (My - M„) 

And the variables introduced in equation (3.3) are defined as follows; 

UEP sensitivity coefficient 

where 

^f{Pmk ^^mk) ' ^th component of the controlling UEP for the perturbed 

power flow, 
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component of the controlling UEP for the base power 

flow case, 

Physically represents the ratio of i-th machine UEP angle change to k-th 

machine generation increase as the amount of generation increase goes to zero. 

Clearing angle sensitivity coefficient 

^mk 

where 

^f'{Pmk ^^mk^ ' ^^h machine angular position at fault clearing for the 

perturbed power flow, 

^f'{Pmk) i machine angular speed at fault clearing for the base 

power flow case, 

Physically represents the ratio of i-th machine clearing angle change to 

k-th machine generation increase as the amount of generation increase goes to zero. 

The clearing angle is the angle at fault clearing time. 
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Clearing speed sensitivity coefficient 

- SPmk - Si SP^, - AI^Z-O AP„, 

where 

^f'iPjYik + ^^mk) ' machine angular position at fault clearing for the 

perturbed power flow, 

ù}^^{Pmfg) ; i-th machine angular speed at fault clearing for the base 

power flow case, 

Physically represents the ratio of i-th machine clearing speed change to 

k-th machine generation increase as the amount of generation increase goes to zero. 

Observing equation (3.2) through (3.6) we can obtain A(AV) caused by 

as a linear combination of AP^j^ if we know the value of the and UEP angle, 

clearing angle and clearing speed sensitivity coefficients. 

3.3 Derivation of Dynamic Sensitivity Equation 

Generally speaking the trajectories of the power system during the faulted 

period are changing smoothly with respect to mechanical power input variation. 

Therefore they are differentiable with respect to mechanical input power at the 

machine terminals. The swing equations during the faulted period are given by, ^ 

^The swing equation in COI reference frame is solved only for i = 1,2, ...,n — 1 , 
n-th machine angle and speed can be obtained from COI constraint equation (2.7). 
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- -P'' p . _ M i  
" Mt ^COI ' ^ ~ - 1 (3.7) 

when 

Pei = E + D^j cos 0^^-] 

fi = P m i - E f a l  

^COI = Z) -Pi - E E 
i=l i=lj = l 

= E ̂ 2 

and 

c f .  = IBillEyls/-

4 = 
f 

G/. ; real part of ij element of internal node reduced faulted admittance matrix. 
'J 

f  . . . .  .  
; imaginary part of ij element of internal node reduced faulted admittance 

matrix. 

Differentiating equation (3.7) with respect to -P^j^ and rearranging we have 

the following set of differential equations, for some k( 1 < & < iV ), 

= -Qik + E - 1 (3.8) 
i=i 

where 
dO: 

^Pmk 
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and 

A J . .  

r  O  J [ / f ,  p  T Z »  f  
^ - Z C": 

- t  j  =  l  J = 1  

/. = c f . c o , e i j - D l s m e i j  +  ̂ ^ D { j s m e , j  
-'• 1=1 

(f j 
Mv f 

Qit = 

A  a i E ' l  f  f  
+ + l^ilâpà)(4-'u + 4 

=  K r o n e c k e r S  

Observing the above dynamic sensitivity equation, we see that it is a time-

varying second order linear differential equation which can be solved numerically 

if the appropriate initial conditions are given. To determine the coefficients of the 

dynamic sensitivity equation we have to know and machine angle 6^ during 

the faulted period to determine the coefficients of dynamic sensitivity equation. The 

procedure to approximate is given in Appendix A. 

^It should not be confused with machine angle in fixed reference frame Si ap­
peared in equation(2.1), and the position of center of inertia • Double subscripted 
S is always kronecker delta, 

— 1 for 2 — Aî J 
= 0 ÎOV i ^ k . 
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3.4 SEP Sensitivity and Controlling UEP Sensitivity 

In the pre-fault system, if there is a generation change, internal voltage angles 

of synchronous machine in COI coordinate will change. In general the functional 

relation between generation change and angle changes is non-linear. If the amount 

of generation change is small enough, then it can be linearized. 

Since we have the dynamic sensitivity equation, stable equilibrium point(SEP) 

sensitivity -mV— which is static in nature, can be obtained easily by suomessing 

tivity coefRcients constitute the part of the required initial conditions for dynamic 

sensitivity equations to obtain the clearing angle and speed sensitivities. 

Since the system is in the pre-fault state, the pre-fault value of network param­

eters should be used in the equations. 

Using above procedure we can obtain (n-1) linear equations for n unknown 

v a r i a b l e s  f o r  s o m e  k ( l  <  k  <  N ) .  

the dynamic term from dynamic sensitivity equation (3.8). SEP sensi 

n  

i=i 
^ ~ * — 1,...,M 1 (3.9) 

where 

,4, = L_ 
''' SP^k 

aei 

and 
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• L  j  =  l  j z = l  

Af- = CfJ cos - X)fJ sin efj + ̂  E sin 9fj 
^ Z=1 

Qfl = 

for i = 1,2, ...,n — 1 and A; = 1,2,..., iV 

and 

eg' = \Ei\\Ej\BfJ 

D^ = |i5i|lE,.lG?; 

G^j ; real part of ij element of internal node reduced pre-fault admittance 

matrix 

; imaginary part of ij element of internal node reduced pre-fault 

admittance 

Only (n-1) equations in n unknown variables are available, one more equation 

is needed to obtain a unique solution. 'The n-th equation can be obtained from COI 

coordinate constraint. COI constraint for sensitivity coefficient equation(3.12) and 
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.13) can be obtained by differentiating equation(3.10) and (3.11) respectively. 

= 0. (3.10) 
i=l 

Yj = 0, (3.11) 
i=l 

T L an .  
•  è  Q p ^  J  ~  ( 3 . 1 2 )  
i = l TTlk 

Q p \  ~  ( 3 . 1 3 )  
i=l "^mk 

With equation(3.12) we can obtain following N sets of linear system. 

(4) = (sD (3-1") 

for 6 = 1,2,..., N  

where 

(iî^) = 

j^pr ^ 

M  y  

(3,15) 

and 

AP^ ; (n-l)x(n) matrix whose elements are defined in equation (3.9), 
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M = {Ml M2 ... Mn), 

4 = ("u "k - <*,)'•' 

Of = («s «S - «S)'-

The UEP sensitivity equation can be obtained by modifying the SEP sensitivity 

equation(3.14). If we change every superscript's' to 'u' and delete every superscript 

'pr', then we can obtain the UEP sensitivity equation. 

(-fc) ~ (àfc) (3.16) 

for k  —  1 , 2 , . . . ,  N  

where 

(i) = (3,17) 

M  

and 

A ; (n-l)x(n) matrix whose elements are defined below, 

u  u  [u  I k  ^ 2 k  

^t denotes the matrix transpose. 
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èfc — (^16 ••• ^nk ^ • 

and 

2Mv ^ ^ 

jfi jfi 
•' i=i j=i 

o )if. n  
A i j  =  C i j C o s e f j - D i j s m e f j  +  j ^ - ^ D i j s m e f -

^ 1=1 

¥ j  

c 

"'" ?i^ 9Pmk ' ' d P ^  ̂^^û' % + ̂ i j  % ) 

for î = 1,2, ...,72 — 1 and fc = l,2,...,7V 

3.5 Key Procedure for Sensitivity Analysis 

3.5.1 Solution of the sensitivity equation 

The dynamic sensitivity equation which is a system of ordinary differential 

equation with time varying coefficients can be solved numerically if we are given 
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the initial conditions. Just before and after the fault, the angular positions and 

speeds of the machines remain the same because of the inertia of the machines. As 

a result we have the following initial conditions. 

= 0 f o r  i  —  1 , 2 ,  . . . , n  fc = 1,2,...,iV - 1 (3.18) 

(3.19) 

Dynamic sensitivity equations with above initial conditions are integrated until 

the fault is cleared, and we can obtain sensitivities of clearing angles and speeds. 

~  ' ^ i k i ^ c l )  f  o r  i  =  1 , 2 , . , . , n  fc = 1,2, ... ,iV -  1 (3.20) 

(3.21) 

where 

t^l ; clearing time 

Solution of the SEP sensitivity equation requires solution of N sets of a system 

of linear equations. Because these N sets of linear system have the same coeffi­

cient matrix ÂP^ with different vector corresponding to k, they can be solved 

simultaneously by using the Gaussian elimination method. The UEP sensitivity 

equations can be solved in the same way. 



www.manaraa.com

38 

3.5.2 Procedure to obtain the energy margin sensitivity with respect 

to generation shifts 

Sensitivity of the energy margin with respect to generation shifts is possible 

on the premise that base power flow case energy margin is accurately assessed by 

the TEF method. In the TEF program, ^ a series of input data are needed. In the 

process of calculating the energy margin of base power flow case, a lot of interme­

diate results are obtainedr "Among those data, the following data are essential to 

sensitivity program. 

• Machine dynamic data and M^) 

• Base power flow solutions 

• Disturbance data (fault type, fault duration and control action to clear fault) 

• Network information (internal node reduced pre-fault, faulted and post-fault 

bus admittance matrix ) 

• Pre-fault SEP and post-fault controlling UEP angles 

• Fault trajectory (angle and speed of machines during fault period)^ 

The key procedure for estimating sensitivity of the energy margin with respect 

to generation shift is as follows (see Figure 3.1). 

''"DIRECT" a program distributed by the Electric Power Research Institute 
Software Center (developed by Ontario Hydro and Iowa State University). 

®In the TEF program to obtain the clearing angles and speeds of machines, the 
swing equation is integrated during fault period using an approximate technique. 
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stepl ; Obtain data and intermediate results from the TEF program. 

Read generation shift data. 

step2 ; Calculate f using the approximation (see Appendix A). 

step3 ; Obtain the SEP sensitivity equations and solve for 

for k=l,2,.. . ,N-l. 

step4 ; Obtain the dynamic sensitivity equations 

=  - Q i k  +  ̂ ] = 1  

for 2 = 1, ...,n — 1 and 6 = 1, ...,iV 

and solve for . 

step5 ; Obtain the UEP sensitivity equations ~ (Sjfc) solve 

for for k=l,2,...,N-l. 

step6 ; Calculate the energy margin sensitivity with respect to generation 

shifts for k=l,2,...,N-l. 
^  m k  

step? ; Calculate the new energy margin (AF)neiy 

(AV )new = {AV)m  + E 
k=l °^mk 

As explained before, the coefficients of the dynamic sensitivity equation are 

time-varying. In the TEF program for the base power flow case, fault trajectory is 

obtained by integrating the swing equations. To save the memory storage for fault 

trajectory, dynamic sensitivity equations are integrated at the same time when the 

swing equations are integrated. 
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Input data(Machine data, power flow, disturbance, generation shifts) 
Obtain pre-fault, faulted and post-fault reduced admittance matrices 

stop 

Approximate np ^ 
^ mfc 

Calculate the energy margin sensitivity ^ 

Calculate new energy margin { à . V ) n e w  =  { ^ y ) o l d  +  ^1=1 o F ^ ^ ^ r n k  

Obtain the SEP sensitivity equation 
{ÂP'') (4) = (Of) for k = 1,2,...,; 

and solve for 

Obtain the UEP sensitivity equation 

and solve for u 

and solve for and û 

Figure 3.1: Flow Chart of Sensitivity Program 
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3.5.3 Computational burden of sensitivity program 

The computational work required in the proposed sensitivity technique is com­

pared with the work involved in repetitive application of the TEF program and 

power flow program. 

To determine the critical generator loading limit using the TEF program, sev­

eral runs of the TEF program and power flow program are needed. 

With the proposed sensitivity technique the behavior of energy margin change 

( by equation (3.2)) can be obtained by running the sensitivity program once. The 

sensitivity program is developed by adding several subroutines and modifying the 

TEF program. The additional computational requirement of the sensitivity pro­

gram is mainly due to the following : 

1. Integrating N sets of the dynamic sensitivity equations whose order and the 

dimension of the variable are the same as the swing equations. 

2. Solving the two linear system of equations to obtain SEP and UEP sensitivity 

coefficients. 

Assuming that computational burden of integrating the swing equations and 

integrating the dynamic sensitivity equation are approximately equal, the ratio of 

computational work of the proposed sensitivity technique to that of TEF program 

involved in integrating the differential equations Rw are given as follows. 
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^  ~  2 { N - 1 )  ^  

It should be noted that this comparison is made neglecting the work required 

to obtain 2(Ar — 1) power flow solutions in order to run TEF program to obtain 

the sensitivity information. In the proposed sensitivity technique the corresponding 

work to obtain 2(iV — 1) power flow solutions consists of the solution to two system 

of linear algebraic equations. It is obvious that the latter is far less than the former. 
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4 SENSITIVITY OF THE ENERGY MARGIN WITH RESPECT 

TO TRANSMISSION INTERFACE POWER FLOW CHANGES 

4.1 Determination of Transmission Interface Power Flow Limits under 

Stability Constrained Situation 

In operating a stability limited power system with limited margin for secure 

operation, it is essential for the operator to obtain limits for a variety of conditions 

and contingencies. These limits are mainly obtained in terms of plant generation 

or transmission interface power flow limits. In certain situations when transmission 

interface power flow changes are made for economic reasons, it is desirable to de­

termine the eff'ect on the stability of the system for different scenarios in order to 

suitably plan for preventive action. 

When the system is radial, linear sensitivity analysis is sufficient to deter­

mine interface power flow limits. To determine the line power flow limits in an 

interconnected system, however, the analysis is not as straight forward as that for 

determining the plant generator loading limits. 

For a given transmission interface power flow change, the energy margin can 

not be uniquely determined. This is because a given transmission interface power 

flow change can be obtained by using different combinations of generation which 

will result in a different amount of energy margin change. 
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For a particular contingency, the change of energy margin with respect to a 

generation shift^ can be obtained using the assumption that the total generation 

remains constant and that the energy margin varies linearly with respect to the 

generation shifts. 

N —1 
ACAF) = E ajAP^i (4.1) 

k = l  

where 

N-1 = Number of generator at which generation can be shifted with respect to 

the reference generator( N-th machine is the reference generator) 

A linear relationship also exists between a line power flow change and genera­

tion shifts [32, chapter 11] given by 

N - 1  
^4 = E Slk'^Pmk (4.2) 

6=1 

where 

Sij^ = Distribution factor of line I due to generation shift at generator fc, 

k = l,2,...,iV — 1 

Using the relationship shown in equation (4.1) and (4.2) a procedure to relate 

the change in interface power flow for a specific change in the base case margin will 

be developed. In doing so the ranges of transmission interface power flow limits 

^It is assumed that the change of generation at k-th machine is compen­
sated by an opposite change of generation at a reference machine. 



www.manaraa.com

45 

are obtained as a result of generation shifts. In this development the following 

assumption are made. 

1. The critical generators at which generation can be shifted with respect to the 

reference machine are known. 

2. When generation is shifted at the critical generators, the sensitivity of the 

energy margin to the change at these generators aj^, 6 = 1,2,..., N — 1 have 

the same sign. The distribution factors for a line J. ]Sij^ k = 1,2, ...,iV — 1 

with respect to the critical generators should all have the same sign in order 

not to cancel out the power flow changes caused from generation shifts at the 

critical generators. On a critical line this is normally the case. 

3. The range of allowed generation shifts at each generator is of such a value as 

to result in zero energy margin. If the system is stable(or unstable) for the 

base power flow case, generation shifts considered will result in zero energy 

margin. 

4. The range of generation shifts assumed in 3 do not exceed the machine or 

equipment ratings. 

Then our problem takes the following form, 

" For a particular contingency determine the minimum and maximum values 

of interface power flow limits satisfying the given constraints." 

If the above problem is reformulated mathematically, we then have , 
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Minimize or Maximize 

JV-1 
A/; = E 

fc = l 

Subject to 

N - 1  

k = l  

and 

-AF < ^ 0 , i/ AF > 0 

,  2 /  A y > o  

f o r  k  = 1,2,...,7V - 1 

where 

AV ; system energy margin which has to be adjusted to result in zero 

energy margin for the stable or unstable case 

If we transform the equation (4.1) using 

^^mk = ^'k^Pmk^ A: = 1,2,..., - 1 (4.3) 

and define by 

=  — A :  =  1 , 2 , . . . ,  i V  —  1  (4.4) 
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then our problem becomes, 

Minimize or maximize 

N - 1  
^ ^ 1 =  E H ^ P ' m k  (4.5) 

fc=l 
Subject to 

N - 1  
E ^PLh = -AK (4.6) 

k = l  

and 

-AF < < 0, i f  A V > 0  

0 < AP^jj, < -AV, if AF < 0 (4.7) 
f o r  6  =  1 , 2 , T V  -  1  

The above problem is a linear programming problem. Because of the simplic­

ity of the objective function and constraint equations, the solution can be easily 

obtained. 

Define the generation shift vector as 

using the transforming equation (4.3) we have 

APLm =  (ApLv - ,  ̂ PL,N-I)  (4 .9)  
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Using the theorem of the simplex method [33, chapter 4] the minimum and 

maximum amount of line power flow change and are respectively given 

by( Proof is given in Appendix B), 

(4.10) 

when AP'yyi = — A V  ^  

A/f = -AF aj (4.11) 

when AEijji = -AV ej 

where 

{|aj|} 

\ a j \  = m a x { \ a j \ }  

4 .2  Sensitivity of the Energy Margin with respect to Transmission 

Interface Power Flow Changes 

In the foregoing section transmission interface power flow limits were obtained 

assuming linear behavior of the energy margin with respect to line power flow 

changes. If the system energy margin is not small enough to justify linear analysis, 

then repetitive application of the TEF program and linear analysis can give the 

transmission interface power flow limits. 

is a (TV — 1) dimensional unit vector whose i-th component is 1 and 0 for 
other components 
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Define sensitivity of the energy margin with respect to the transmission inter­

face power flow change as Pi , 

A { A V )  

h  
A s  explained in the foregoing section, does not have an unique value. But 

we can obtain the maximum or minimum value of |/3^ | assuming the following. 

1. The critical generators at which generation can be shifted with respect to the 

reference machine are known. 

2. Sijig has the same sign for all & = 1,2, . . . , N  —  1 . 

3. The range of generation shifts at each generator is of such a value as to result 

in the given line power flow change. 

4. The range of generation shifts assumed in 3 do not exceed the machine or 

equipment ratings. 

Then the problem to obtain the range of \f3i\ becomes the followings. 

Minimize or maximize 

N - 1  
A(AF) = ^ a^APl (4.13) 

fc=l 
Subject to 

N - l  
E ^^Ik^mk = (4-14) 

fc=l 
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and 

-All < SikAP^^ < 0, if < 0 

0 < Sij^AP^j^ < Ml, if > 0 (4.15) 

f o r  6 = 1,2, . . . , N  —  1 

Then the maximum and minimum amount of energy margin change A(Ay)* 

and A(AF)* are given respectively, 

A(AF)* = ^ (4.16) 

when ARm = 

A(AV) t  = ^ (4.17) 
3  

when A£rn = 
a^oij 

From the equation (4.16) and (4.17) the minimum and maximum value of 

sensitivity of the energy margin with respect to the transmission interface power 

flow change |/3^| are given respectively. 

/3f= max {|/3,|} = (4.18) 

01, = min {1/3,1} = (4.19) 
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01 represents the ratio of the energy margin change to the transmission interface 

power flow change. 

4.3 Remarks on the Constraints 

In Sections 4.1 and 4.2 several assumptions are made. All assumptions except 

the same sign constraint are necessary to make a meaningful linear programming 

problem. Because of the sign constraint and simple inequality constraints the so­

lutions were obtained easily without using the standard algorithm for solving the 

linear programming problem. 

To monitor line power flow limits, broad range of line power flow limits are not 

desirable. For a particular contingency we can pick an appropriate line which shows 

a narrow range of the transmission interface power flow limits. 

1. For the assumed generation shifts all the aj^ should be of the same sign. 

2. The difference between and A7^* should be small. 

3. For the assumed generation shifts the distribution factors of the line should 

be large. 

Rule 1 generally holds for the critical lines. Since a small distribution factor 

results in small line power flow changes due to generation shifts, lines having small 

distribution factors with respect to a certain generator will not have sufficient change 

in power flow due to change in generation. This also indicates that these lines may 

not be critical lines with respect to the generation changes considered. It is also 

obvious that even though a certain line shows good characteristics to monitor line 
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power flow changes for a particular contingency, it can be an inappropriate line for 

monitoring power flow changes for other contingencies. 

The three conditions stated above are well satisfied for a radial system. In an 

interconnected system, however, the above three conditions are satisfied only for a 

critical line which absorbs a major portion of power flow change due to generation 

shift between the critical generators and the reference generator. 
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5 THE TEST SYSTEM 

5.1 Test System 

The test system used in validation study is the Reduced Iowa System, which 

was developed by the Power System Computer Service at Iowa State University. 

Figure 5.1 shows the main study area. 

The base power-flow system is a model of 862 buses and 1323 lines and trans­

formers. Most of the transmission lines are 345 KV and 161 KV, while some of the 

lines are 230 KV, 115 KV, or 69 KV. A partial one-line diagram of the key buses 

and the major high voltage transmission lines in the area are shown in Figure 5.2. 

Load flow data are given in reference [16]. 

This base power-flow model was reduced by a network reduction program to a 

model with 163 buses and with 304 lines and transformers. The resulting Reduced 

Iowa System is shown in Figure 5.3. The generator dynamic data, together with 

initial operation conditions are given in Table 5.1. 

This test system was used to simulate faults primarily in the western part of 

the network along the Missouri river. Several generating plants are located electri­

cally close to each other. A disturbance in that part of the network substantially 

influences the motion of several generators and very complex Modes of Disturbance 

can occur. 
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Figure 5.1: The Main Study Region for the Reduced Iowa System 
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Table 5.1: Generator Data and Initial Conditions of the 17-Generator System 

Initial Conditions 
Generator Parameters® Power Internal Voltage 

Generator H ^'d E S 
Number (MW/MVA) (pu) (pu) (pu) (degree) 

1 100.00 0.0040 20.000 1.00319 -27.93 
2 34.56 0.0437 7.940 1.13337 -1.34 
3 80.00 0.0100 15.000 1.03015 -16.32 
4 80.00 0.0050 15.000 1.00112 -26.09 
5 16.79 0.0507 4.470 1.06795 -6.23 
6 32.49 0.0206 10.550 1.05055 -4.56 
7 6.65 0.1131 1.309 1.01610 -23.04 
8 2.66 0.3115 0.820 1.12346 -26.94 
9 29.60 0.0535 5.519 1.11930 -12.40 

10 5.00 0.1770 1.310 1.06517 -11.12 
11 11.31 0.1049 1.730 1.07774 -24.35 
12 19.79 0.0297 6.200 1.06097 -10.11 
13 200.00 0.0020 25.709 1.01058 -28.15 
14 200.00 0.0020 23.875 1.02059 -26.73 
15 100.00 0.0040 24.670 1.01861 -21.10 
16 28.60 0.0559 4.550 1.12433 -6.68 
17 20.66 0.0544 5.750 1.11166 -4.39 

® On a 100-MVA base. 

5.2 Test Cases 

Contingency 

Six contingencies were studied on the reduced Iowa System. The corresponding 

conditions of each contingency are listed in Table 5.2. 

In Table 5.2 fault clearing time for test cases are longer than usual clearing 

time. These values of fault clearing times were chosen such that the energy margn 

of the base power flow case was small for the purpose of analysis. 
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Table 5.2: Condition of the Contingencies 

Faulted Bus( 3 phase fault ) Trip Line Fault Clearing Energy Margin for 
Base Power Flow Name Number From To time (sec) 

Energy Margin for 
Base Power Flow 

Ft.Cal. 773 77 773 0.342 1.719995 
Ft.Cal. 773 77 773 0.367 -1.794749 
C.Blff. 436 436 771 0.187 1.675387 
C.Blff. 436 436 771 0.209 -1.815234 
Cooper 6 6 439 0.191 1.994042 
Cooper 6 6 439 0.219 -2.225264 

Generation shifts 

For each contingency, the generators at which generation is shifted are as 

follows(Gg;reference machine). These generators are severely disturbed during dis­

turbance and have large effect on the energy margin change. 

1. Ft.Calhoun fault : Giq , Gi 2i (<^13 and G?i7) 

2. Council Bluff fault : G12 

3. Cooper fault : G2 
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6 RESULTS 

6.1 Determination of Critical Generator Loading Limits 

The sensitivity program was tested to determine critical generator loading lim­

its for the particular contingencies chosen. 

6.1.1 Procedure 

The test procedures for the sensitivity program are as follows; 

Stepl ; Select contingency 

Step2 ; Run the sensitivity program and determine critical generator loading 

limits assuming linear behavior of the energy margin change with 

respect to generation shifts. 

Step3 ; Run the power flow program to obtain a modified power flow solution 

using generation shift data obtained in step2. 

Step4 ; Run the TEF program using the modified power flow solution . 

If {ùkV)new < E then stop, otherwise go to step 5. 

Step5 ; Adjust generation shift using following equation, 

\p0.à (^^)old A r> 
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where 

^Pmk ' generation shift obtained at step 2 

Step 6 ; If < e then stop, otherwise run power flow program to obtain 

new power flow solution using adjusted generation shift obtained at 

step 5 and go to step 2. 

6.1.2 Test results 

For the base power flow case, the sensitivity program was run. Partial deriva­

tives of the energy margin with respect to generation changes are given in Table 

6.1. 

Table 6.1: Partial Derivative of Energy Margin with respect to Generation Change 

Contingency Partial Derivative of Energy Margin 
with respect to Generation Change Faulted 

Bus 

Clearing 

time(sec) 

Partial Derivative of Energy Margin 
with respect to Generation Change Faulted 

Bus 

Clearing 

time(sec) 
^Prr,.9. 

c^(A7) 
^•PmA n 

c>(AF) 
dPmA •?. dPmA fi 

Ft.Cal. 
Fault 

0.342 
0.367 

-1.6709 
-1.7072 

-2.8617 
-3.0598 

-3.5424 
-3.7676 

-2.4883 
-2.6095 

-3.9551 
-4.2572 

0.5865 
0.6075 

C.BlfF. 
Fault 

0.187 
0.209 

0.06564 
0.07756 

-3.5155 
-3.8470 

-4.3243 
-4.9027 

-0.1309 
-0.1843 

0.06355 
0.07074 

0.13882 
0.14778 

Cooper 
Fault 

0.191 
0.219 

-3.3397 
-2.1366 

0.02354 
0.08338 

-0.0854 
0.04989 

-0.2776 
-0.02080 

0.09629 
0.08704 

0.12736 
0.10026 

Using the test procedure generator loading limits were obtained and shown in 

Table 6.2. It should be noted that sufficiently accurate generator loading limits 

were obtained at step5 for all the cases considered. 
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Table 6.2: Generator Loading Limits(Gg;Reference Machine) 

Contingency J Shifting 
Generator 

Loading Limit 
Sensit.Anal. 

(MW) 

Loading Limit 
Full TEF 

(MW) 

Relative 
Error 
(%) 

Fault 
Location 

Clearing 
time(sec) 

Shifting 
Generator 

Loading Limit 
Sensit.Anal. 

(MW) 

Loading Limit 
Full TEF 

(MW) 

Relative 
Error 
(%) 

Ft.Cal. 

Fault 

0.342 
sec 

Stable 
^16 ^^ml6 = 37.87 ^^ml6 37.26 1.6 

Ft.Cal. 

Fault 

0.342 
sec 

Stable ^12 ^^ml2 = 41.66 ^^ml2 = 40.85 2.0 

Ft.Cal. 

Fault 

0.342 
sec 

Stable 
Gyi ^^mYl = 55.94 ^^ml7 = 54.31 3.0 

Ft.Cal. 

Fault 

0.342 
sec 

Stable 

Gyi 
<^13 

= 56.03 

^^ml3 -56.03 
APmll = 54.58 

^^ml3 = -54.58 -2.7 
Ft.Cal. 

Fault 
0.367 Unstable 

<^16 AP^i6 = —36.89 ^^ml6 — —37.53 -1.7 

Ft.Cal. 

Fault 
0.367 Unstable <^12 ^Pmn = -41-02 AP™.12 = -42.79 -4.1 

Ft.Cal. 

Fault 
0.367 Unstable 

Gi7 A4»17 = -55.79 ^Pml7 = -56.80 -1.8 

C. Biff. 
Fault 

0.187 Stable 
^12 ^^12 = 37.54 ^^ml2 ~ 37.33 0.6 

C. Biff. 
Fault 

0.187 Stable <^10 APmlO = 45.85 ^^mlO = 45-88 -0.1 C. Biff. 
Fault 

0.209 Unstable 
^10 ^P-mlO = -45.44 = -44.69 1.7 

C. Biff. 
Fault 

0.209 Unstable ^12 ^Anl2 - -35.94 ^^ml2 — —35.52 1.2 
Cooper 

fault 
0.191 Stable G2 AP^2 = 57.51 AP^2 — 56.63 1.6 Cooper 

fault 0.219 Unstable G2 APm2 = -55.06 ^Pm2 = -54.65 0.8 
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Generally speaking sensitivities of the energy margin with respect to generation 

change obtained from sensitivity program are accurate for the severely disturbed 

machines. 

6.1.3 Accuracy of the sensitivity analysis 

In the previous section results of sensitivity analysis are shown and its accuracy 

is well within the limits for practical application. 

But if we look at generation loading limits, the differences from base power flow 

case are close to 40 MW for all cases considered. It is natural to ask what accuracy 

can we get in predicting large difference of generator loading from the base power 

flow case. To answer this question 7 cycle(0.1167 sec) faults are chosen to predict 

the energy margin change. 

For these cases the transient energy margins are so large that generator loading 

hit the machine thermal rating well before it reaches generator stability loading 

limits. But for the purpose of analysis, approximately 300 MW generation shifts 

are considered neglecting generator thermal ratings. 

With this large value of generation shift, however, the amount of generation 

shift is not enough to result in zero system energy margin. Instead of obtaining 

the generator loading limits, required generation shifts are predicted to obtain the 

predetermined system energy margin change. 
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Table 6.3: Energy Margin Change Behavior due to Large Generation Shifts 

Contin­
gency 

Full TEF Analysis Sensitivity 
Analysis 

Error 
(%) Contin­

gency 
Base Power Flow Modified Power Flow Engy.Marg. 

Chg. A{AV) 

Sensitivity 
Analysis 

Error 
(%) Contin­

gency Power(MW) AV Gen.Shift(MW) Ay 
Engy.Marg. 

Chg. A{AV) Gen.Shift(MW) 

Error 
(%) 

Ft.Cal. 
Fault 

tri - 7cycle 

Pm\2 = 620 
PmlQ = 455 
^mU = 575 

27.0906 
^PfnU ^ 100 
^Anl6 = 100 

= 100 
20.8164 -6.2742 

APml2 94.08 
^^mie = 94.08 
^^ml7 = 94.08 

-5.9 

C.BlfF. 
Fault 

t^l = Tcycle 

PmlQ = 131 

-^ml2 ~ 620 
9.0392 

^^mlO = 150 

^^ml2 = 150 
1.37461 -7.6646 

^^mlO ~ 139.05 

APjni2 139.05 
-7.3 

Cooper 
Fault 

tf.1 - Tcycle 
= 794 8.8675 ^^m2 = 300 2.3357 -6.5318 . AP^2 - 292.00 -2.7 
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The nature of the faults are the same as for those shown in Table 6.1 except for 

the fault duration. For the Ft.Calhoun fault it is assumed that generation is shifted 

between three critical generators(G?]^2> ^16» ^1?) ^ind the reference machine with 

increased generation at the critical generators equally distributed among the three 

critical generators. For the Council Bluff fault it is assumed that generation is 

shifted between two critical generator((?2Q, G12) the reference machine with 

increased generation at the critical generators equally distributed. For the Cooper 

fault only G2 is shifting generation with respect to the reference machine. In Table 

6.3 the results of sensitivity analysis are compared with those obtained from the 

TEF program and power flow studies. 

Observing the errors in sensitivity analysis to determine generation shifts to 

obtain the given energy margin changes, the sensitivity analysis gives errors which 

are larger than those obtained in Table 6.2. However, these errors are within 

10 % for the cases considered. These relatively small errors are mainly due to linear 

behavior of the energy margin change over a wide range with respect to generation 

change. 

6.2 Determination of the Interface Power Flow Limits 

Several key lines are chosen to monitor line power flow limits for the assumed 

contingencies. Distribution factors for these lines were obtained using the Philadel­

phia Electric Company(PECO) power flow program and are shown in Table 6.4. 

From Table 6.4 line 471 Hill - 435 Sycamore is clearly a critical line for gener­

ation shifts at the all critical generators. When there are generation shifts between 

critical group of machines and reference machine(generator 9), the line 471 (Hill)-
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435(Sycamore) serves as a major passage for these generation shifts. This passage 

behaves like a radial system as far as the assumed generation shifts are considered. 

Table 6.4: Distribution Factors of Monitored Line(Grg:reference) 

Distribution Factor 
Monitored Line <^2 <^10 <^12 <^17 <^16 

471 Hill-435 Sycamore 
193 Lakefield - 372 Raun 
7 Lincoln - 779 Sub.3454 

6 Cooper - 393 St.Joe 

-0.296 -0.313 -0.316 -0.302 -0.301 
-0.101 -0.115 -0.116 -0.109 -0.138 
0.069 -0.052 -0.056 0.007 -0.182 
0.266 0.159 0.176 0.226 0.174 

Line 7 Lincoln - 779 Sub.3454 has a small distribution factor, 0.007, with 

respect to generation shift at As a result this line is not critical with respect 

to generation shift at generator Gif. 

Table 6.5: Sensitivity of Energy Margin with respect to Generation Shift aj^ 
(Gg:reference machine) 

Contingency ^2 (^10 <^12 ^17 <^16 
Ft.Calhoun fault 

= 0.342 sec 
AV = 1.719995 

-2.2573 -3.4482 -4.1288 -3.0748 -4.5416 

Council Bluff fault 
= 0.187 sec 

AV = 1.675388 
-0.1004 -3.6543 -4.4631 -0.3192 -0.08627 

Cooper fault 
= 0.191 sec 

AF = 1.99404 
-3.4671 -0.1343 -0.2427 -0.4524 -0.04053 

For a particular contingency, line power flow limits were determined by the 

sensitivity analysis. These results were compared with those of repetitive run of the 

TEF program and power flow program. In table 6.5 values of ajç, are shown. For the 
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three contingencies considered earlier, line power flow limits for the critical line 471 

Hill - 435 Sycamore, were determined by sensitivity analysis. These results compare 

accurately with those obtained from repetitive application of the TEF method and 

the power flow studies(Table 6.6). 

From table 6.6 it can be seen that, in the worst case, a 11 MW decrease in 

power flow at 471 Hill - 435 sycamore (positive line power flow direction is from 

Hill to Sycamore) will make the system critically stable assuming that generation 

shifts occur at four critical generators. 

To show the validity of rule 3 in section 4.3 for selecting a critical line, three 

non-critical lines are chosen. The sensitivity analysis for these lines are shown in 

Table 6.7. These results clearly show the effect of the distribution factors on the 

sensitivity analysis for these lines. 
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Table 6.6: Line Power Flow Limits at Line 471 Hill - 435 Sycarmore 

Contingency Range of Line Power Flow Limits 
Fault Clearing Critical Sensitivity Full TEF Error (%) 
Loc. time(sec) Generator Analysis Results Low.Lim. Upp.Lim. 

Ft.Cal. 0.342 
<^10 <^12 

<^16 <^17 
-16.89 < All - -11-40 -16.22 < All ^ -11-09 4.1 2.8 

C.Blff. 0.187 ^10 ^\2 -14.35 < All ^ -11-86 -14.27 < All ^ -11-75 0.6 0.9 

Cooper 0.191 G2 All ̂  -17-02 All ̂  -16.62 2.3 
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Table 6.7: Line Power Flow Limits at Non-critical Line 

Monitored 
Line 

Contin­
gency 

Range of Line Power Flow Limits Monitored 
Line 

Contin­
gency Sensitivity 

Analysis 
Full TEF 
Results 

Error (%) 
Monitored 

Line 
Contin­
gency Sensitivity 

Analysis 
Full TEF 
Results Low.Lim. Upp.Lim. 

193 Lakefd 

.372 Raun 

Ft.Cal. 
C.BlfF. 
Cooper 

-6.1 < All ^ -4.83 
-5.27 < All < -4.35 

All ~ 89 

-5.67 < All ^ -4.59 
-5.06 < All - "4.19 

All = -5.46 

7.6 
4.2 

5.2 
3.8 

193 Lakefd 

.372 Raun 

Ft.Cal. 
C.BlfF. 
Cooper 

-6.1 < All ^ -4.83 
-5.27 < All < -4.35 

All ~ 89 

-5.67 < All ^ -4.59 
-5.06 < All - "4.19 

All = -5.46 7.9 
7 Lincoln 

779 S.3454 

Ft.Cal. 
C.BlfF. 
Cooper 

-6.89 < All < 0.39 
-2.38 < All < -2.10 

All = 3.97 

-6.64 < All ^ 0.41 
-2.37 < All ^ 2.07 

All - 3.85 

3.8 
0.4 

-4.9 
1.4 

7 Lincoln 

779 S.3454 

Ft.Cal. 
C.BlfF. 
Cooper 

-6.89 < All < 0.39 
-2.38 < All < -2.10 

All = 3.97 

-6.64 < All ^ 0.41 
-2.37 < All ^ 2.07 

All - 3.85 3.1 
6 Cooper 

393 S.Joe 

Ft.Cal. 
C.BlfF 

Cooper 

6.59 < All ^ 12.64 
6.61 < All ^ 7.29 

All = 15.30 

6.6 < All ^ 12.33 
6.74 < All ^ 7.55 

A// = 15.07 

-0.1 
-1.9 

2.5 
3.4 

6 Cooper 

393 S.Joe 

Ft.Cal. 
C.BlfF 

Cooper 

6.59 < All ^ 12.64 
6.61 < All ^ 7.29 

All = 15.30 

6.6 < All ^ 12.33 
6.74 < All ^ 7.55 

A// = 15.07 1.5 
(Critical Generators for each Contingency) 

Ft.Cal. Fault : ^16' ^17 
C.BlfF. Fault : G|q, G\2 
Cooper Fault : G2 
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7 CONCLUSION 

This dissertation used the transient energy function technique to relate the 

energy margin with relevant system parameters. The sensitivity of the energy mar­

gin with respect to generation shift has been used to determine plant generation 

loading limits and interface power flow limits. By relating the energy margin with 

important system parameters, the TEF method gives qualitative and quantitative 

description of the change in the power system transient stability behavior. 

The proposed procedure was validated by comparing the sensitivity analysis 

results and full TEF program runs. The following conclusions can be drawn from 

the data presented in this dissertation. 

1. An analytic technique has been developed to relate the transient energy mar­

gin with generation shifts and interface power flow limits. Sensitivity analysis 

successfully predicts the generator loading limits and line power flow limits 

with reasonable accuracy when the system is stability limited. 

2. The sensitivities of the energy margin with respect to generation shifts are ac­

curate when generation shifts occur between critical group of generators and 

the reference machine (The reference machine belongs to non-critical group 

of generators.). 
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3. Transmission interface power flow limits are not unique for the interconnected 

system. With a reasonable assumption, the range of transmission interface 

power flow limits can be obtained by sensitivity analysis and linear program­

ming. 

4. Sensitivity analysis on the TEF method on the base power flow case allows 

determination of secure operating conditions for various conceivable contin­

gencies. It provides needed generation shifts for secure operation of power 

system when the system is stability limited. 

7.1 Suggestions for Future Work 

The experiences gained during the research project suggest the following sub­

jects of investigation. 

1. To investigate the case where the Mode of Disturbance is changing due to 

generation shifts. 

2. To investigate the second order sensitivity. 

3. To extend analytic sensitivity technique to higher order power system models. 
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10 APPENDIX A 

To obtain approximated value of ^ , two power flow solutions are needed 

for each generation change. To avoid this process a simpKfied method is developed. 

Because the internal voltage of the generator whose generation is changing 

a varies much more than the other generators, (i ^ k) are assumed to be zero. 

Only is approximated using the Kirchhoff's law. 
^^mk 

Algorithm to approximate due to generation change 

When there is generation change, it is assumed that only real power is changing. 

But in actual power flow, generator which participate in generation change also 

changes its reactive power. To take this into account, reactive power change 

is considered. The ratio of is picked by observing the actual power flow. 

Figure 10.1 shows the generator terminal branch which participate in gener­

ation change for the base power flow case. If there is a complex power change 

{AP^jç 4- AQjç) at the machine terminal with the terminal voltage Vj^ held con-
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k-th Machine bus 
which participate in 

generation shift 
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^mk 
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Figure 10.1: Equivalent Circuit of Classical Machine Model during Transient 
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s tant then Ej^ will change to By applying KirchhofF's law at this branch, 

we have, 

4 = ^ (10.1) 

Then can be approximated as 
^ mk 

For the 17 Generator Iowa System several values of AQ were tried and AQ = 

showed good results. 

^In power flow studies active power and terminal voltage of generator node are 
held constant 
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11 APPENDIX B 

Problem in section 4.1 and 4.2 can be transformed into following form without 

loss of generality. 

Problem 

Minimize and maximize 

1 E H H \  (11-1) 
i=l 

Subject to 

n 
Z) = -c 
2 = 1 

— c  <  <  0  for all i  

where 

0 < c 

are of the same sign for all i = 1,2, ...,n 
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Solution 

n 
min I ^ = a*c 

i=l 
n 

max I ^ = o*c 
i=l 

where 

a* = min {|oJ} 

a* = max {|aj|} 

Proof 

Note that feasible value of œ = [xi,x2^ .., ,xn) should lie on the set Q . 

n 
Q = {ri(-cei) + T2(-ce2) + ...+ rn(-cen)lO < < 1 and ^ = 1} 

z=l 
where is the unit vector whose i-th component is 1 and zero for other com­

ponents. 

Let V = {(—ce]^), (—ce2), ... (—cen,)} is a set of extreme point of fl. Let 
n 

us assume x ^ V and achieve its extremum of equation (11.1). Since ^ is 
i=l 

difFerentiable in the domain Q and achieve its extremum, it is necessary to satisfy 
^ n d ^ 

E = 0 • But H^i) = («1, a2> ••• ,an) 7^ 0 . It contradicts 
- Z = 1 - 2 = 1 

the assumption. Therefore x which achieves extremum of should 

be contained in V . 
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But inner product of (aj^, «2) ••• i^n) and one of elements of set V gives 

•ca^. Hence solutions of the problem are as follows. 

n 
mzn, I ^ 

i=l 
n 

max I ^ = o*c 
%=1 
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